ADC前端设计科普贴——ADC采样前端模型初探
作者:世健Wolfe Yu
时间:2021-07-12
来源:电子产品世界
- 加入技术交流群
- 扫码加入
和技术大咖面对面交流
海量资料库查询
- 扫码加入
收藏 <a href=’https://ad.eepw.com.cn/www/delivery/ck.php?n=a635e61e&amp;cb=INSERT_RANDOM_NUMBER_HERE’ target=’_blank’><img src=’https://ad.eepw.com.cn/www/delivery/avw.php?zoneid=88&amp;cb=INSERT_RANDOM_NUMBER_HERE&amp;n=a635e61e’ border=’0′ alt=” /></a> <a href=’https://ad.eepw.com.cn/www/delivery/ck.php?n=a576c0a2&amp;cb=INSERT_RANDOM_NUMBER_HERE’ target=’_blank’><img src=’https://ad.eepw.com.cn/www/delivery/avw.php?zoneid=87&amp;cb=INSERT_RANDOM_NUMBER_HERE&amp;n=a576c0a2′ border=’0′ alt=” /></a>
本文引用地址:http://www.eepw.com.cn/article/202107/426834.htm
前言
ADC在实际应用中,经常会出现无法达到标称精度的情况,而且还会出现波形严重失真的问题,这一现象长期困扰着我们的硬件工程师,那么,在实际的ADC应用中,为何会出现这种情况呢?
笔者在这里通过一个实例和大家一起共同来探讨 ADC在应用中可能会碰到的问题。
案例分享
日前,有客户公司在用某ADC做AD转换的时候,碰到这样一个问题,客户传感器型号PT100,在采集信号时,输入采样端的波形如下:
我们首先假定这是一个直流前端,抛开交流耦合等因素,单从这个采样波形来看,采样端明显是工作异常的。那么,为何会出现这种情况呢?
ADC模型初探
我们先来大致解剖一下 ADC电路参考模型及其驱动电路,通过这个模型来跟大家共同来探讨一番,为了便于做定量分析,我们在文中插入一些公式,供大家参考。
为了更加直观,我们删繁就简,重新整理这个电路,单看输入、采样端的电路模型,大致如下:
为了简化设计,我们假设输入电压近似于一个直流电源,抛开耦合因素,输入内阻远大于采样电阻,Rin>>Rsh,输入电容和采样电容之间的关系用a来表示:
初始状态,相对来说Vin向Cin充电相对较小,主要看Cin向Csh充电过程,我们构建电路模型如下图所示:
根据以上模型,可以大致推导出第1阶段输入电压和采样电压对应方程,以及采样电容充电时间关系。
当Csh电压迅速上升到与Cin相当之后,我们忽略Rsh对电路的影响,我们重新构建第2阶段电路模型如下。
此时,等效电容为输入电容和采样电容并联,根据以上模型,可以大致推导出输入电压和采样电压对应方程如下:
此时,根据等效模型,我们可以推导出正常状态下:
由此,我们可以画出采样端波形大致如下:
根据ADC内部结构和,我们可以很轻松的推导出,第二阶段的时间远远大于第一阶段的时间,同时,我们也可以推导出,采样时间和输入电阻必须满足:
按照正常采样,第二阶段采样时间必须要满足输入电阻、输入电容和采样电容并联的乘积关系。如果采样不足,又会出现怎样的情况呢?在采样开关断开之后,采样保持阶段,由于Cx变小,输入电容充电速度明显加快,此时,Csh电压几乎不变,大致波形应如下(具体推导公式不再列出):
结合该客户反馈的测试结果,我们大致判断出,客户这个问题是由于在未达到采样条件时就开始进行ADC采样并转换引起。
解决方案
结合上述电路模型及其推导公式,我们该如何解决此类问题呢?我们给出三种建议:
A.延迟采样时间;
B.加大输入电容;
C.增加驱动电路,重构输入阻抗。
实施细节
一、延迟采样,增加采样周期
这一点不难理解,只要采样速率没有要求,理论上来说,增加采样周期,完成ADC转换完全没问题,本文不做重点讲解。
二、加大输入电容
我们在很多ADC采样场合都看到ADC输入前端有一个电容,如果我们设定Rin非常小,忽略不计,那么这个电容有何作用呢?本文中,我们有一个推导公式:
由于在每个采样周期内,输入电容和采样电容的电压值都会相对固定,如果我们通过调整输入输入电容和采样电容的比值来调整第一阶段的快速充电时间,这似乎不失为一个好办法。
但是,当输入电源发生变化的时候,由于采样电容吸收能力有限,采样端输入电容泄放又会遇到新的难题。同时,对于高频信号来说,电容越大,等效阻抗会更小。
所以,在采样端引入输入电容的时候,我们需要非常谨慎,这个电容大多数是用来做高频分量滤波用的。
三、增加驱动能力,重构输入阻抗
我们再回到第2阶段采样时间这个公式:
如果我们能够降低输入阻抗,就会大大缩短采样时间,目前增加驱动有两种主流方法:
第一种是用变压器来做驱动电路,这个方法有一个弱点,只能针对交流信号,对工作频率有要求,需要做匹配设计。
另一种方法是用运放做跟随器,这样可以大大降低信号端的内阻,大多数模拟前端都采用这种方法来做前端设计。
经过和客户确认,客户后来采用运放做跟随驱动的方法,重新测试一版,测试采样端波形如下图,从硬件电路来看,应该找到问题所在,目前还在验证中。
Microchip ADC介绍
针对传感器市场,Microchip推出多种Delta-Sigma ADC,可以满足多种不同应用需求,特别是这么缺货的年代,
MCP356X简介:
24 bits Delta-Sigma ADC
153.6 kSPS @ 16 bits,19.2 kSPS @ 24 bits
OSR Rang:32-98034
VREF External VREF rang:0.1V-AVDD
Clock Internal or External
RMS Effective Resolution: Up to 23.3 bits
Power Consumption:0.8-2 Ma
Package:UQFN-20
同时,Microchip也有多种运算放大器可以用来做前端设计,供大家选择。
关键词: ADC 前端
评论
我来说两句……
验证码:
相关推荐
- 基于AT0600的GPS接收机射频前端电路 设计方案 基于 AT0600 接收机 射频 前端 | 2009-07-06
- 天天在用的ADC,内部原理你了解吗? 模拟技术 ADC STM32 | 2024-05-06
- ADS4149 – 超低功耗, 14位, 250-MSPS ADC 视频 TI ADC ADS4149 | 2010-05-06
- 招聘IC设计工程师(前端设计 数字) ALLEN99200 | 2005-06-21
- 轻松简化模拟输入模块设计的系统级ADC 电源与新能源 ADI ADC | 2023-12-12
- 高速ADC基础 模拟技术 ADC 数模转换 | 2024-05-16
- 详解Σ-Δ型ADC拓扑结构的基本原理 模拟技术 ADC 拓扑结构 调制器 数字信号 | 2024-01-09
- MX2740构成的GPS射频前端电路 设计方案 MX2740 构成 射频 前端 | 2009-07-06
- MAX11200 微功耗(<1mW)、24位ADC 视频 Maxim ADC | 2010-10-28
- 高速ADC与内置嵌入式串行收发器的FPGA接口 视频 Altera FPGA ADC Linear 串行收发器 | 2009-05-19
- 实用模拟电路设计技术-4 资源下载 ADI EDN 模拟电路 UNDERSAMPLING APPLICATIONS ADC SFDR | 2008-01-05
- ADS1115: 工业级最小尺寸16位 ADC 视频 TI ADS1115 ADC | 2010-03-11
- 看高度集成的 ADC 如何简化现实世界信号的转换 电源与新能源 MPS ADC | 2023-09-26
- PT100的前端电路 设计方案 PT100 前端 电路 | 2009-07-06
- 基础教程:模数转换器 视频 ADI 模数转换器 ADC | 2012-06-18
- 新一代多路复用ADC如何简化复杂系统设计 手机与无线通信 ADC ADI | 2023-09-06
- KWIK电路常见问题解答 模拟技术 KWIK电路 ADC ADI | 2023-09-11
- 安霸发布前端 AI 开发者平台:Cooper 智能计算 安霸 前端 AI 开发者平台 | 2024-01-23
- 高速电路设计技巧\\sect7a 资源下载 ADI ACS ADC CAD IC SPICE NPN DC | 2007-12-29
- 实用模拟电路设计技术-8 资源下载 ADI 电路 放大器 ADC FFT | 2008-01-02
- 伺服环路 ADC 测试简介 元件/连接器 伺服环路 ADC | 2023-08-23
- IC培训 supertiger | 2005-12-06
- 基于MRFICl505R2的GPS接收机射频前端电路 设计方案 基于 MRFICl505R2 接收机 射频 前端 | 2009-07-06
- 智能家用电热水器 论文 资源下载 Motorola MC68HC CGM MEMORY ADC TDM | 2007-02-09
- 数字集成电路前端设计 supertiger | 2005-10-09
- RFMD推出CDMA双频手机/GPS前端接收器方案 meigd | 2005-10-28
- 如何为ADC增加隔离而不损害其性能呢? 电源与新能源 隔离时钟 ADC EMI | 2023-12-28
- 数显高灵敏度FM调频立体声前端的制作 设计方案 数显 灵敏度 调频 立体声 前端 制作 | 2009-07-06
- 数字集成电路前端设计就业班(第二期) 热报中! ann* | 2005-11-09
- 实用模拟电路设计技术-8 资源下载 ADI EDN 模拟电路 ADC FFT | 2008-01-05
- 上一篇:第九届西部电博会7月15日与您相约成都
- 下一篇:2021中国西部微波射频技术研讨会即将在成都举办
<a href=’https://ad.eepw.com.cn/www/delivery/ck.php?n=a674caa6&amp;cb=INSERT_RANDOM_NUMBER_HERE’ target=’_blank’><img src=’https://ad.eepw.com.cn/www/delivery/avw.php?zoneid=86&amp;cb=INSERT_RANDOM_NUMBER_HERE&amp;n=a674caa6′ border=’0′ alt=” /></a>
焦点
更多>>
<a href=’https://ad.eepw.com.cn/www/delivery/ck.php?n=a50e4511&amp;cb=INSERT_RANDOM_NUMBER_HERE’ target=’_blank’><img src=’https://ad.eepw.com.cn/www/delivery/avw.php?zoneid=85&amp;cb=INSERT_RANDOM_NUMBER_HERE&amp;n=a50e4511′ border=’0′ alt=” /></a>
推荐视频
更多>>
<a href=’https://ad.eepw.com.cn/www/delivery/ck.php?n=aaeb3436&amp;cb=INSERT_RANDOM_NUMBER_HERE’ target=’_blank’><img src=’https://ad.eepw.com.cn/www/delivery/avw.php?zoneid=84&amp;cb=INSERT_RANDOM_NUMBER_HERE&amp;n=aaeb3436′ border=’0′ alt=” /></a>
技术专区
- FPGA
- DSP
- MCU
- 示波器
- 步进电机
- Zigbee
- LabVIEW
- Arduino
- RFID
- NFC
- STM32
- Protel
- GPS
- MSP430
- Multisim
- 滤波器
- CAN总线
- 开关电源
- 单片机
- PCB
- USB
- ARM
- CPLD
- 连接器
- MEMS
- CMOS
- MIPS
- EMC
- EDA
- ROM
- 陀螺仪
- VHDL
- 比较器
- Verilog
- 稳压电源
- RAM
- AVR
- 传感器
- 可控硅
- IGBT
- 嵌入式开发
- 逆变器
- Quartus
- RS-232
- Cyclone
- 电位器
- 电机控制
- 蓝牙
- PLC
- PWM
- 汽车电子
- 转换器
- 电源管理
- 信号放大器
0 Comments